Discovering Constraints for Inductive Process Modeling

نویسندگان

  • Ljupco Todorovski
  • Will Bridewell
  • Pat Langley
چکیده

Scientists use two forms of knowledge in the construction of explanatory models: generalized entities and processes that relate them; and constraints that specify acceptable combinations of these components. Previous research on inductive process modeling, which constructs models from knowledge and time-series data, has relied on handcrafted constraints. In this paper, we report an approach to discovering such constraints from a set of models that have been ranked according to their error on observations. Our approach adapts inductive techniques for supervised learning to identify process combinations that characterize accurate models. We evaluate the method’s ability to reconstruct known constraints and to generalize well to other modeling tasks in the same domain. Experiments with synthetic data indicate that the approach can successfully reconstruct known modeling constraints. Another study using natural data suggests that transferring constraints acquired from one modeling scenario to another within the same domain considerably reduces the amount of search for candidate model structures while retaining the most accurate ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Domain Transfer of Constraints for Inductive Process Modeling

In this paper, we discuss a mechanism for transfer learning in the context of inductive process modeling. We begin by describing the dual role of knowledge as a source of model components and structural constraints. Next, we review the task of inductive process modeling and emphasize the effect of domain knowledge on the learning component. We then describe the performance and learning elements...

متن کامل

Production Constraints Modelling: A Tactical Review Approach

A constraint is a limitation or a restriction that poses a threat to the performance and efficiency of a system. This paper presented a tactical review approach to production constraints modeling. It discussed the theory of constraints (TOC) as a thinking process and continuous improvement strategy to curtail constraints in other to constantly increase the performance and efficiency of a system...

متن کامل

Learning and Discovery in Symbolic Systems Biology PRE WORKSHOP PROCEEDINGS In collaboration with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

The discovery of differential equations from measured data has been studied in the area of machine learning under the topic of computational scientific discovery, and more specifically equation discovery, for almost two decades. The talk will describe state-of-the-art methods for discovering differential equations from measured data and domain knowlege, focusing on inductive process modeling. I...

متن کامل

Metaqueries for Data Mining

This chapter presents a framework that uses metaqueries to integrate inductive learning methods with deductive database technologies in the context of knowledge discovery from databases. Metaqueries are second-order predicates or templates, and are used for (1) Guiding deductive data collection, (2) Focusing attention for inductive learning, and (3) Assisting human analysts in the discovery loo...

متن کامل

The Induction and Transfer of Declarative Bias

People constantly apply acquired knowledge to new learning tasks, but machines almost never do. Research on transfer learning attempts to address this dissimilarity. Working within this area, we report on a procedure that learns and transfers constraints in the context of inductive process modeling, which we review. After discussing the role of constraints in model induction, we describe the le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012